Search, what's on your mind?

Watch Aaha Kalyanam Movie free, YouTube Rs75/-

In YouTube, the Aaha kalyanam Movie is paid one with a cost of Rs 75/-. But here you get the free watch link.

B.Tech. First Year Class Notes Study Materials.PDF

In Bachelor of Technology (B.E / B.Tech.) first year, mainly there are 5 subjects common to all universities and colleges. They are the following listed below available freely. Click on the respective download.

Plausible Image Thresholding Matlab Codes

Suppose that the image consists of one or more objects and background, each having distinct gray-level values. The purpose of thresholding is to separate these areas from each other by using the information given by the histogram of the image.

Maintaining significant information of the image

Matlab Code
 clear;  
 % Threshold level parameter alfa:  
 alfa=0.1;% less than 1/3  
 [x,map]=gifread('lena.gif');  
 ix=ind2gray(x,map);  
 I_max=max(max(ix));  
 I_min=min(min(ix));  
 level1=alfa*(I_max-I_min)+I_min;  
 level2=2*level1;  
 level3=3*level1;  
 thix1=max(ix,level1.*ones(size(ix)));  
 thix2=max(ix,level2.*ones(size(ix)));  
 thix3=max(ix,level3.*ones(size(ix)));  
 figure(1);  
 colormap(gray);  
 subplot(2,2,1);  
 imagesc(ix);  
 title('lena');  
 subplot(2,2,2);  
 imagesc(thix1);  
 title('1');  
 subplot(2,2,3);  
 imagesc(thix2);  
 title('2');  
 subplot(2,2,4);  
 imagesc(thix3);  
 title('3');  

Input
lena.gif

Output / Results

1

2

3

Improvement of signal-noise ratio of an image

Matlab Code
 clear;  
 % Threshold level parameter alfa:  
 alfa=0.1;% less than 1/3  
 [x,map]=gifread('lena.gif');  
 ix=ind2gray(x,map);  
 I_max=max(max(ix));  
 I_min=min(min(ix));  
 level1=alfa*(I_max-I_min)+I_min;  
 level2=2*level1;  
 level3=3*level1;  
 thix1=max(ix,level1.*ones(size(ix)));  
 thix2=max(ix,level2.*ones(size(ix)));  
 thix3=max(ix,level3.*ones(size(ix)));  
 figure(1);  
 colormap(gray);  
 subplot(2,2,1);  
 imagesc(ix);  
 title('lena');  
 subplot(2,2,2);  
 imagesc(thix1);  
 title('one');  
 subplot(2,2,3);  
 imagesc(thix2);  
 title('two');  
 subplot(2,2,4);  
 imagesc(thix3);  
 title('three');  

Input
lena.gif

Output / Results

one

two

three

Percentage level Image Thresholding

Matlab Code
 clear;  
 % Threshold level parameter alfa:  
 alfa=0.1;% less than 1/3  
 [x,map]=gifread('lena.gif');  
 ix=ind2gray(x,map);  
 I_max=max(max(ix));  
 I_min=min(min(ix));  
 level1=alfa*(I_max-I_min)+I_min;  
 level2=2*level1;  
 level3=3*level1;  
 thix1=max(ix,level1.*ones(size(ix)));  
 thix2=max(ix,level2.*ones(size(ix)));  
 thix3=max(ix,level3.*ones(size(ix)));  
 figure(1);  
 colormap(gray);  
 subplot(2,2,1);  
 imagesc(ix);  
 title('lena');  
 subplot(2,2,2);  
 imagesc(thix1);  
 title('10%');  
 subplot(2,2,3);  
 imagesc(thix2);  
 title('20%');  
 subplot(2,2,4);  
 imagesc(thix3);  
 title('30%');  

Input
lena.gif

Output / Results

10%

20%

30%

Reduction of the noise effect in an image

Matlab Code
 clear;  
 % Threshold level parameter alfa:  
 alfa=0.1;% less than 1/3  
 [x,map]=gifread('lena.gif');  
 ix=ind2gray(x,map);  
 I_max=max(max(ix));  
 I_min=min(min(ix));  
 level1=alfa*(I_max-I_min)+I_min;  
 level2=2*level1;  
 level3=3*level1;  
 thix1=max(ix,level1.*ones(size(ix)));  
 thix2=max(ix,level2.*ones(size(ix)));  
 thix3=max(ix,level3.*ones(size(ix)));  
 figure(1);  
 colormap(gray);  
 subplot(2,2,1);  
 imagesc(ix);  
 title('lena');  
 subplot(2,2,2);  
 imagesc(thix1);  
 title('noise effect reduced by one alfa');  
 subplot(2,2,3);  
 imagesc(thix2);  
 title('noise effect reduced by two alfa');  
 subplot(2,2,4);  
 imagesc(thix3);  
 title('noise effect reduced by three alfa');  

Input
lena.gif

Output / Results

noise effect reduced by one alfa

noise effect reduced by two alfa

noise effect reduced by there alfa